Mineral Admixtures

  • Mineral admixtures are type of Pozzolanic Admixtures of Concrete which are Ground granulated blast furnace slag (GGBFS), Fly ash, Silica Fume, Rice Husk Ash, Metakaolin etc.
  • A pozzolana is a material which, when combined with calcium hydroxide (lime), exhibits cementitious properties. Pozzolanas are commonly used as an addition (the technical term is "cement extender") to Portland cement concrete mixtures to increase the long-term strength and other material properties of Portland cement concrete and in some cases reduce the material cost of concrete. 

  • Pozzolans are used to improve the workability and quality of concrete, to effect economy, and to protect against disruptive expansion caused by the reaction between different constituents of mass concrete. A pozzolan is defined as a siliceous or siliceous and aluminous material which, in itself, possesses little or no cementitious value but will, in finely divided form and in the presence of moisture, chemically react with calcium hydroxide at ordinary temperatures to form compounds possessing cementitious properties. Natural pozzolanic materials occur in the form of obsidian, pumicite, volcanic ashes, tuffs, clays, shales, and diatomaceous earth. Most of these pozzolans require grinding. Fly ash (fuel dust from power plants burning coal) too can be an excellent pozzolan as it has a low carbon content, a fineness about the same as that of Portland cement, and occurs in the form of very fine glassy spheres.

1. Ground Granulated Blast Furnace Slag (GGBFS)

  • Ground granulated blast-furnace slag is the granular material formed when molten iron blast furnace slag (a by-product of iron and steel making) is rapidly chilled (quenched) by immersion in water. It is a granular product, highly cementitious in nature and, ground to cement fineness, hydrates like Portland cement. (Blast-Furnace Slag: A by-product of steel manufacture which is sometimes used as a substitute for Portland cement. In steel industry when iron ore is molted, then in the molted state all the impurities come at its surface which are removed called slag. It consists mainly of the silicates and aluminosilicates of calcium, which are formed in the blast furnace in molten form simultaneously with the metallic iron. Blast furnace slag is blended with Portland cement clinker to form PORTLAND BLASTFURNACE SLAG CEMENT).

  • GGBFS is used to make durable concrete structures in combination with ordinary Portland cement and/or other pozzolanic materials. GGBFS has been widely used in Europe, and increasingly in the United States and in Asia (particularly in Japan and Singapore) for its superiority in concrete durability, extending the lifespan of buildings from fifty years to a hundred years. Concrete made with GGBFS cement sets more slowly than concrete made with ordinary Portland cement, depending on the amount of GGBFS in the cementitious material, but also continues to gain strength over a longer period in production conditions. This results in lower heat of hydration and lower temperature rises, and makes avoiding cold joints easier, but may also affect construction schedules where quick setting is required. Use of GGBFS significantly reduces the risk of damages caused by alkali-silica reaction (ASR), provides higher resistance to chloride ingress, reducing the risk of reinforcement corrosion, and provides higher resistance to attacks by sulfate and other chemicals.


A. Durability
GGBFS cement is routinely specified in concrete to provide protection against both sulphate attack and chloride attack. 
GGBFS is also routinely used to limit the temperature rise in large concrete pours. The more gradual hydration of GGBFS cement generates both lower peak and less total overall heat than Portland cement.

B. Appearance
In contrast to the stony grey of concrete made with Portland cement, the near-white color of GGBFS cement permits architects to achieve a lighter colour for exposed fair-faced concrete finishes, at no extra cost.

C. Strength
Concrete containing GGBFS cement has a higher ultimate strength than concrete made with Portland cement. It has a higher proportion of the strength-enhancing calcium silicate hydrates (CSH) than concrete made with Portland cement only, and a reduced content of free lime, which does not contribute to concrete strength. Concrete made with GGBFS continues to gain strength over time, and has been shown to double its 28 day strength over periods of 10 to 12 years.

2. Fly Ash:

  • The finely divided residue resulting from the combustion of ground or powdered coal. Fly ash is generally captured from the chimneys of coal-fired power plants; it has POZZOLANIC properties, and is sometimes blended with cement for this reason. Fly ash includes substantial amounts of silicon dioxide (SiO2) (both amorphous and crystalline) and calcium oxide (CaO). Toxic constituents include arsenic, beryllium, boron, cadmium, chromium, cobalt, lead, manganese, mercury, molybdenum, selenium, strontium, thallium, and vanadium.

  • Class F Fly Ash: The burning of harder, older anthracite and bituminous coal typically produces Class F fly ash. This fly ash is pozzolanic in nature, and contains less than 10% lime (CaO). The glassy silica and alumina of Class F fly ash requires a cementing agent, such as Portland cement, quicklime, or hydrated lime, with the presence of water in order to react and produce cementitious compounds.

  • Class C Fly Ash: Fly ash produced from the burning of younger lignite or subbituminous coal, in addition to having pozzolanic properties, also has some self-cementing properties. In the presence of water, Class C fly ash will harden and gain strength over time. Class C fly ash generally contains more than 20% lime (CaO). Unlike Class F, self-cementing Class C fly ash does not require an activator. Alkali and sulfate (SO4) contents are generally higher in Class C fly ashes. In addition to economic and ecological benefits, the use of fly ash in concrete improves its workability, reduces segregation, bleeding, heat evolution and permeability, inhibits alkali-aggregate reaction, and enhances sulfate resistance. Even though the use of fly ash in concrete has increased in the last 20 years, less than 20% of the fly ash collected was used in the cement and concrete industries. One of the most important fields of application for fly ash is PCC pavement, where a large quantity of concrete is used and economy is an important factor in concrete pavement construction.

3. Silica Fume

  • By-product of semiconductor industry
  • The terms condensed silica fume, microsilica, silica fume and volatilized silica are often used to describe the by-products extracted from the exhaust gases of silicon, ferrosilicon and other metal alloy furnaces. However, the terms microsilica and silica fume are used to describe those condensed silica fumes that are of high quality, for use in the cement and concrete industry. Silica fume was first ‘obtained’ in Norway, in 1947, when environmental restraints made the filtering of the exhaust gases from the furnaces compulsory. Silica Fume consists of very fine particles with a surface area ranging from 60,000 to 150,000 ft²/lb or 13,000 to 30,000 m²/kg, with particles approximately 100 times smaller than the average cement particle. Because of its extreme fineness and high silica content, Silica Fume is a highly effective pozzolanic material. Silica Fume is used in concrete to improve its properties. It has been found that Silica Fume improves compressive strength, bond strength, and abrasion resistance; reduces permeability of concrete to chloride ions; and therefore helps in protecting reinforcing steel from corrosion, especially in chloride-rich environments such as coastal regions.

4. Rice Husk Ash:

  • This is a bio waste from the husk left from the grains of rice. It is used as a pozzolanic material in cement to increase durability and strength. The silica is absorbed from the ground and gathered in the husk where it makes a structure and is filled with cellulose. When cellulose is burned, only silica is left which is grinded to fine powder which is used as pozzolana.


Popular Posts